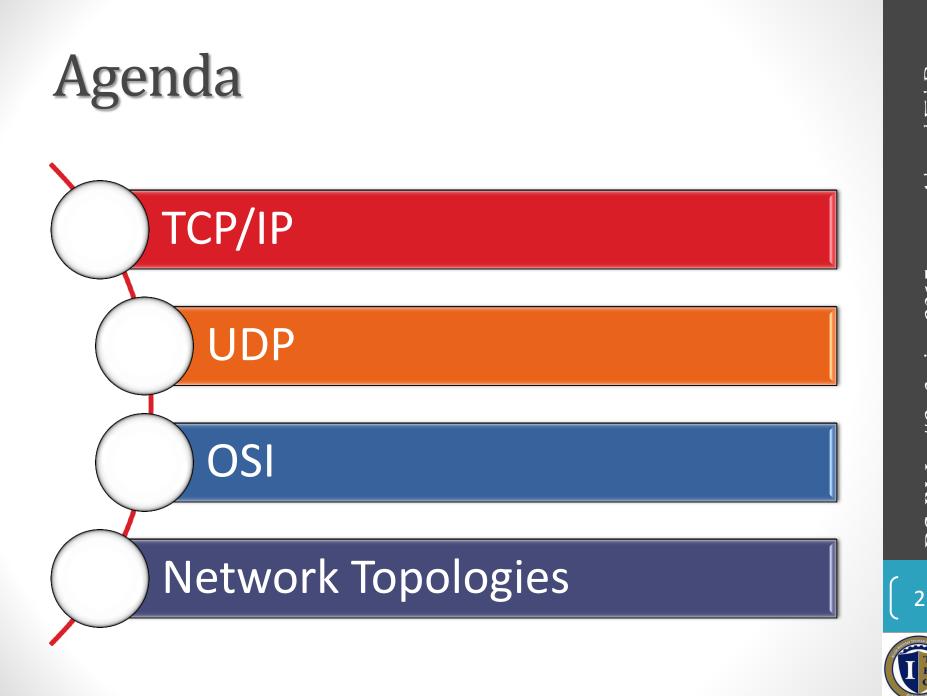


INTEGRATED TECHNICAL EDUCATION CLUSTER AT ALAMEERIA


E-626-A Data Communication and Industrial Networks (DC-IN)

- Lecture #2
- Layered Communication protocols & Network Topologies

Instructor: Dr. Ahmad El-Banna)anna

Ahmad

© Ahmad] ſ , Spring 201 DC-IN, Lec#2

E]_Banna

LAYERED COMMUNICATION PROTOCOLS

DC-IN, Lec#2 , Spring 2015

)anna

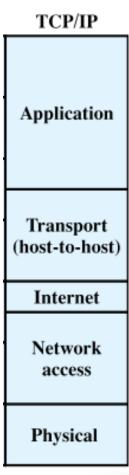
Ahmad

 \bigcirc

3

LO.

, Spring 201


JC-IN, Lec#2

TCP/IP

- The TCP/IP protocol architecture is a result of protocol research and development conducted on the experimental packet-switched network, **ARPANET**, funded by the Defense Advanced Research Projects Agency (DARPA), and is generally referred to as the TCP/IP protocol suite.
- This protocol suite consists of a large collection of protocols that have been issued as Internet standards by the Internet Activities Board (IAB).

TCP/IP Layers

- The communication task can be organized into five relatively independent layers.
 - Physical layer
 - Network access layer
 - Internet layer
 - Host-to-host, or transport layer
 - Application layer

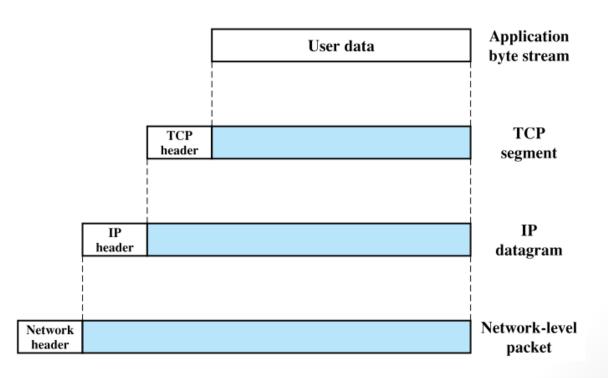
TCP/IP Layers ...

- The **physical layer** covers the physical interface between a data transmission device (e.g., workstation, computer) and a transmission medium or network.
- The **network access layer** is concerned with the exchange of data between an end system (server, workstation, etc.) and the network to which it is attached.
 - Concerned with issues like:
 - Destination address provision
 - Invoking specific services like priority
 - Access to & routing data across a network
- The function of the **internet layer** is to complete the procedures needed to allow data to traverse *multiple* interconnected networks.
 - The Internet Protocol (IP) is used at this layer to provide the routing function across multiple networks.

LO

DC-IN, Lec#2, Spring 201

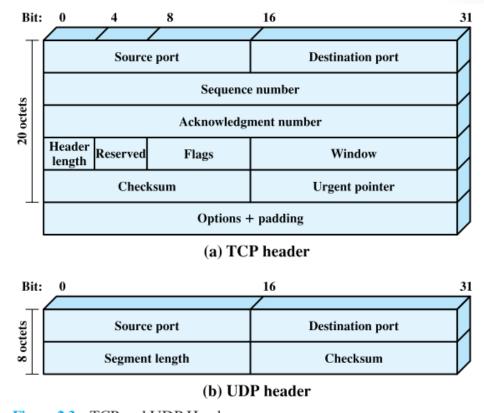
TCP/IP Layers ...


The Transport layer:

- Common layer shared by all applications
- Concerned with providing reliable delivery of data
- Essentially independent of nature of the applications
- The application layer contains the logic needed to support the various user applications.
 - Separate module is needed for each type of application

Protocol Data Units (PDU) in the TCP/IP architecture

- The combination of data and control information is a protocol data unit (PDU)
- Typically control information is contained in a PDU header.
- Headers may also include:
 - source port, destination port, sequence number, and error-detection code



LO

TCP and UDP

- In addition to TCP, there is one other transport-level protocol that is in common use as part of the TCP/IP protocol suite: the User Datagram Protocol (UDP).
- UDP does not guarantee delivery, preservation of sequence, or protection against duplication.
- UDP enables a procedure to send messages to other procedures with a minimum of protocol mechanism.

9

LO.

IP and IPv6

- For decades, the keystone of the TCP/IP protocol architecture has been IP.
- IPv6 provides a number of functional enhancements over the previous IP, designed to accommodate the higher speeds of today's networks and the mix of data streams, including graphic and video.
- But the driving force behind the development of the new protocol was the need for **more addresses**.
- The previous IP uses a **32-bit** address to specify a source or destination.
- IPv6 includes **128-bit** source and destination address fields.

OSI Model

- The Open Systems Interconnection (OSI) reference model was developed by the International Organization for Standardization (ISO) as:
 - a model for a computer protocol architecture and
 - a framework for developing protocol standards.
- The OSI model consists of seven layers:
 - Application
 - Presentation
 - Session
 - Transport
 - Network
 - Data link
 - Physical

OSI Layers

OSI	TCP/IP	
Application		
Presentation	Application	
Session		
36351011		
Transport	Transport (host-to-host)	
Network	Internet	
	Network access	
Data link		
Physical	Physical	

OSI Model					
	Layer	Data unit	Function ^[3]	Examples	
Host layers	7. Application	Data	High-level APIs, including resource sharing, remote file access, directory services and virtual terminals	HTTP, FTP, SMTP	
	6. Presentation		Translation of data between a networking service and an application; including character encoding, data compression and encryption/decryption	ASCII, EBCDIC, JPEG	
	5. Session		Managing communication sessions, i.e. continuous exchange of information in the form of multiple back-and-forth transmissions between two nodes	RPC, PAP	
	4. Transport	Segments	Reliable transmission of data segments between points on a network, including segmentation, acknowledgement and multiplexing	TCP, UDP	
Media	3. Network	Packet/Datagram	Structuring and managing a multi-node network, including addressing, routing and traffic control	IPv4, IPv6, IPsec, AppleTalk	
	2. Data link	Bit/Frame	Reliable transmission of data frames between two nodes connected by a physical layer	PPP, IEEE 802.2, L2TP	
	1. Physical	Bit	Transmission and reception of raw bit streams over a physical medium	DSL, USB	

NETWORK TOPOLOGIES

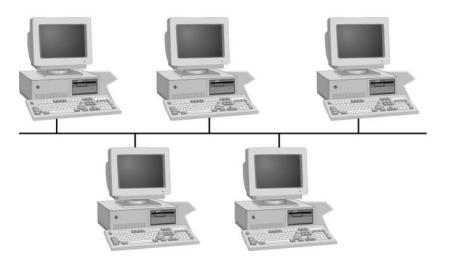
Ahmad \bigcirc Spring 2015 DC-IN, Lec#2

)anna

© Ahmad El-Banna

DC-IN, Lec#2, Spring 2015

- Physical topology: physical layout of nodes on a network.
- Three fundamental shapes:
 - Bus
 - Ring
 - Star
- May create hybrid topologies
- Topology integral to type of network, cabling infrastructure, and transmission media used.


S

Spring 201

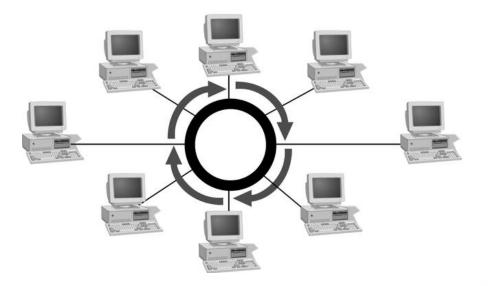
DC-IN. Lec#2

Bus Topology

 A Bus topology consists of a single cable—called a bus— connecting all nodes on a network without connectivity devices.

Bus Topology..

- Advantages
 - Works well for small networks
 - Relatively inexpensive to implement
 - Easy to add to it
- Disadvantages
 - Management costs can be high
 - Potential for congestion (crowding) with network traffic


LO

Spring 201

DC-IN, Lec#2

Ring Topology

- Ring topology
 - Each node is connected to the two nearest nodes so the entire network forms a circle
 - One method for passing data on ring networks is **token passing**
 - **token passing** is a channel access method where a signal called a token is passed between nodes that authorizes the node to communicate.

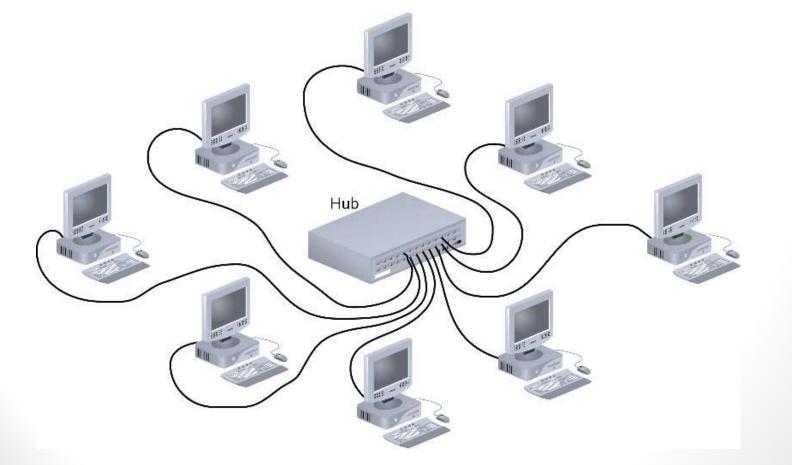
LO.

, Spring 201

JC-IN, Lec#2

Ring Topology..

- Advantages
 - Easier to manage; easier to locate a defective node or cable problem.
 - Well-suited for transmitting signals over long distances on a LAN
 - Handles high-volume network traffic.
 - Enables reliable communication.
- Disadvantages
 - Expensive.
 - Requires more cable and network equipment at the start.
 - Not used as widely as bus topology
 - Fewer equipment options.
 - Fewer options for expansion to high-speed communication.


© Ahmad El-Banna

DC-IN, Lec#2, Spring 2015

Star Topology

 Every node on the network is connected through a central device

LO

Spring 201

C-IN. Lec#2

Star Topology..

- Any single cable connects only two devices
 - Cabling problems affect two nodes at most
- Requires more cabling than ring or bus networks
 - More fault-tolerant
- Easily moved, isolated, or interconnected with other networks
 - Scalable

Star Topology...

- Advantages
 - Good option for modern networks
 - Low startup costs
 - Easy to manage
 - Offers opportunities for expansion
 - Most popular topology in use; wide variety of equipment available
- Disadvantages
 - Hub is a single point of failure
 - Requires more cable than the bus

DC-IN, Lec#2

DC-IN, Lec#2, Spring 2015

- For more details, refer to:
 - Chapter 2, W. Stallings, Data and Computer Communications, 8th edition, 2007.
- The lecture is available online at:
- Lecture notes are found at:
 - http://bu.edu.eg/staff/ahmad.elbanna-courses/12133
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>